
Journal of Global Optimization 27: 313–332, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

313

Routing of Railway Carriages

PETER BRUCKER1, JOHANN HURINK2 and THOMAS ROLFES1,∗
1University of Osnabrück, Osnabrück, Germany (Email: peter@mathematik.uni-osnabrueck.de)
2University of Twente

Abstract. In the context of organizing timetables for railway companies the following railway car-
riage routing problem occurs. Given a timetable containing rail links with departure and destination
times/stations and the composition of the trains, find a routing of railway carriages such that the
required carriages are always available when a train departs. The problem is formulated as an integer
multi-commodity network flow problem with nonlinear objective function. We will present a local
search approach for this NP -hard problem. The approach uses structural properties of the integer
multi-commodity network flow formulation of the problem. Computational results for a real world
instance are given.

Mathematics Subject Classification: 90B35

Key words: Railway scheduling, local search, multi-commodity flow

1. Introduction

Railway companies normally divide the process of making a new timetable into
several steps. In the first phase a possible timetable, containing rail links with
departure and destination times and stations, and the trains’ capacities is developed.
Subsequently, the problem of finding a possible implementation of this timetable
is considered. In this context, one of the arising subproblems is the question of
how the railway carriages should be routed in order to always have the required
carriages available when a train departs.

In this paper we will consider this railway carriage routing problem in more
detail. A precise definition of the problem is given as follows. A timetable is given
which contains a set of passenger train rail links. For each of these rail links the
following data are given:

• departure station and destination station,
• departure time and arrival time at the destination, and
• regular composition of the train (type of locomotive, number of first and second

class carriages, dining carriage, etc.).

∗ Supported by Transport-, Informatik-, und Logistic Consulting GmbH (TCL), Wiesbaden.

314 P. BRUCKER ET AL.

Trains for all passenger train rail links must be available at the departure station in
time. This implies that locomotives and railway carriages have to be rerouted from
destination stations to departure stations.

The task is usually divided into two subtasks:
1. reroute railway carriages,
2. route locomotives.

There are two possibilities to accomplish the first subtask:
• connect limited numbers of carriages on trains serving the passenger train rail

links (these links will be called existing links),
• create additional trains with the sole purpose of transporting carriages without

passengers (these links will be called additional links).
To organize the traffic for short-distance trains the German railway network is

divided into several subnetworks (regional areas). A planning team is responsible
for scheduling the railway traffic in each subnetwork. Twice a year the timetable
of the German railway network is changed and, as a consequence, a new routing
of railway carriages has to be found. As the task of rerouting railway carriages for
the short-distance trains in regional areas is dealt with more or less manually, we
were asked to explore the possibility of doing this automatically. The purpose of
this paper is to document the results of a corresponding study.

We formulated the rerouting problems as an integer multi-commodity network
flow problem with a fixed cost objective function. This problem is a network design
problem which contains the following NP-hard problems as special cases:

• the one commodity network flow problem with fixed cost objective function,
and

• the integer multi-commodity network flow problem with linear objective func-
tion.

There are a few papers in which metaheuristics are applied to network design
problems.

In connection with tactical planning of rail freight networks Marin & Salmeròn
[1996] applied Simulated Annealing and Tabu Search to an integer single commod-
ity flow problem with piecewise linear objective function. For small size problems
they compared the achieved results with the results of a branch and bound method.

Garcia et al. [1998] studied a multiperiod network design problem with one
commodity. They applied local search methods coupled with Genetic Algorithms
to solve a corresponding single commodity network flow problem with fixed cost
objective function.

Recently, Crainic & Gendreau [2000] applied a Simplex-based Tabu Search
method to the continuous multi-commodity flow problem with fixed cost objective
function. Their method which is based on a path-flow formulation combines the
search with column generation techniques.

We solve the integer version of this problem which is even more challenging
(c.f. Crainic [2000], p.273). Our approach is based on a two-phase local search
method based on Simulated Annealing which we apply in connection with an arc-

ROUTING OF RAILWAY CARRIAGES 315

flow formulation of the problem. For the definition of an appropriate neighborhood
we use the fact that any feasible solution is dominated by a spanning tree solution.

We would like to mention two other papers which are of interest. Radtke [1995]
discussed a problem related to locomotive routing, while Schrijver [1993] con-
sidered the problem of minimizing the number of carriages for an hourly train
service of the Nederlandse Spoorwegen (NS) on the Amsterdam-Vlissingen line
under the assumption that link demands at the stations (Amsterdam, Rotterdam,
Roosendaal, and Vlissingen) are known. The carriages are coupled and decoupled
from the regular trains, or kept stationary overnight. For this reason no extra limits
for transporting carriages are needed. A two-commodity network flow problem has
been solved for the case of two different types of carriages.

This paper is organized as follows. The arc-flow formulation of the problem is
given in Section 2. In Section 3 appropriate neighborhood structures are derived
while Section 4 is devoted to implementations and computational results. Some
conclusions can be found in Section 5.

2. Network Flow Formulations

In Section 2.1 we will formulate the railway carriage routing problem under the
condition that there is only one type of railway carriage. This leads to a single-
commodity network flow formulation. The generalization of this model to different
types of carriages leads to a multi-commodity flow problem which is presented
in Section 2.2. The final section deals with additional restrictions relevant to the
problem.

2.1. THE SINGLE-CARRIAGE CASE - A SINGLE-COMMODITY FLOW MODEL

There are m railway stations i = 1, . . . , m between which we have the passenger
train rail links. Associated with each rail link there is a departure and a destination
station, as well as a departure and an arrival time. Furthermore, the number of
railway carriages needed for this link is known. We are interested in undertaking
the routing for a fixed period (e.g. for one day or one week) which will be repeated
periodically. Let

ti1 � ti2 � . . . � tini

be the ordered sequence of all departure or arrival times for rail links starting or
ending at station i. These times define vertices viu(i = 1, . . . , m; u = 1, . . . , ni)

of the network under consideration. Thus, each vertex viu corresponds with either
the departure or the arrival of some train k at station i. Let l(k) be the number of
carriages coupled to train k. If k departs at station i at time tiu, we set biu = l(k)

(demand in vertex viu) and if k arrives at station j at time tju, we set bju = −l(k)

(supply in vertex vju). For each station i we introduce two additional vertices vio

316 P. BRUCKER ET AL.

and vi,ni+1 which indicate the starting time and ending time, respectively, of the
period. The use of these vertices will be discussed later. Let V be the set of all
these vertices.

The arcs in the network represent the possibilities of rerouting carriages from
destination to departure stations. There are three types of arcs.

• Transition arcs (vir , vi,r+1) are used to allow carriages to wait at station i for
period [tir , ti,r+1] if they are needed at this station at a later stage.

• Associated with each existing link and its departure tir and arrival tjs there
is an arc (vir , vjs) allowing empty carriages to be connected to the train. The
flow in these arcs will only correspond to the number of carriages which are
additionally moved from station i to station j by the existing link and not to
the carriages which belong to the regular composition of the train (the supplies
and demands in the vertices corresponding to the departure and arrival of the
existing link take care of these carriages).

• Additional arcs (vir , vjs) are introduced to establish additional rail links with
the purpose of bringing empty carriages from station i to j . A flow of value
x > 0 in such an arc indicates that a locomotive with x carriages without
passengers will leave station i after time tir and arrive at station j before time
tjs (if the flow in such an arc is 0, nothing will happen). Therefore, such an arc
may only be introduced if the times corresponding to the vertices vir and vjs

satisfy the condition

tir + dij � tjs , (2.1)

where dij is the travel time which a train needs to travel from station i to j .
To avoid too many arcs of the third type being introduced we restrict this type
of arc to those fulfilling the conditions

ti,r+1 + dij > tjs (2.2)

and

tir + dij > tj,s−1, (2.3)

i.e. only arcs where the time difference tjs − tir � dij is as small as possible
belong to the arc set.

The set of all these arcs is denoted by E. Associated with each arc (vir , vjs)

there is a capacity uir,js . If i �= j , value uir,js denotes the number of carriages
which can be (additionally) coupled to the train; i.e. if the link corresponding to the
arc (vir , vjs) is an existing rail link, uir,js denotes the maximal number of carriages
which can be coupled to the carriages which already belong to the train on this rail
link. If the link corresponding to the arc (vir , vjs) is an additional rail link, uir,js

denotes the maximal number of carriages which can be moved on this additional
link. If i = j (the arc is of the form (vir , vi,r+1)), the value uir,(i,r+1) denotes the

ROUTING OF RAILWAY CARRIAGES 317

Figure 1. Network with flow

capacity of station i. This capacity reflects the fact that due to the equipment of the
station only a limited number of carriages can be parked there.

An Example

Figure 1 shows an example with two stations and two trains linking station 2 to
station 1. The first train departs at 8:00 from station 2 and arrives at 10:00 at station
1. It is coupled to two carriages. The second train with 4 carriages departs at 12:00
and arrives at 15:00. The planning period extends from 0:00 to 24:00. A journey
with empty carriages between these stations takes at least one hour and 30 minutes.

The vertices are labeled with nonzero demands/supplies whilst the labels at
the arcs indicate nonzero flow values of a feasible solution. In this example, two
additional links for carrying empty carriages from station 1 to station 2 are estab-
lished. Note that the flow can be transformed into a circulation (which describes
the routing of the railway carriages) by adding two units of flow to x21,11 and four
units to x22,12 and setting all demands/supplies to zero.

We have not yet stated how to define the supply/demand for the additional
vertices vio and vi,ni+1. The definition of these values depends on the aim of the
railway company. There are two possibilities.

• If the company wants to generate a solution for the planning period which can
be repeated for the next period (e.g. a daily or a weekly schedule), we have
to guarantee that at the end of the period the same number of carriages are at
each station as at the beginning of the period. This can be achieved by adding

318 P. BRUCKER ET AL.

a return arc (vi,ni+1, vio) with infinite capacity and defining bio = bi,ni+1 = 0
(see the above example).

• If the company wants to have fixed numbers of carriages at the different sta-
tions at the beginning and end of the planning period (these numbers may
be different), this can be achieved by assigning these distributions as sup-
ply/demand to the additional vertices. More precisely, if at station i we want
to have bi carriages available at the beginning and b′

i carriages at the end of
the period, we define bio = −bi and bi,ni+1 = b′

i .
The corresponding network flow problem is

min
∑

(vir ,vjs)∈E

fir,js(xir,js) (2.4)

s.t. ∑
ir :(vir ,vjs)∈E

xir,js −
∑

ir :(vjs ,vir)∈E

xjs,ir = bjs vjs ∈ V (2.5)

0 � xir,js � uir,js and integer (vir , vjs) ∈ E (2.6)

where xir,js denotes the number of carriages to be additionally transferred from
vir to vjs . fir,js(x) are the corresponding costs for transferring x carriages. These
costs depend on the type of the arc (vir , vjs).

• If (vir , vjs) is a transition arc no costs will result from sending a flow through
the arc.

• If (vir , vjs) is associated with an existing link (denote the set of all these arcs
by E1), a positive flow in the arc means that additional carriages are coupled to
the regular composition of the train traveling on this link. Thus, no additional
fixed costs occur (resulting from the use of a locomotive on the link). However,
additional costs (energy, maintenance, etc.) occur depending on the number of
carriages coupled to the existing train. We will assume that these costs are
linear in the number of carriages and, therefore, that the costs of a flow of x

units in the arc may be defined by Wij x, where Wij is a constant approximating
the additional cost for one additional carriage coupled to a train traveling from
station i to station j .

• If (vir , vjs) is associated with an additional link (denote the set of all these arcs
by E2), a positive flow x in the arc means that a new train will be established
to bring x carriages from station i to station j . Besides the costs relating to
the number of carriages x (given by Wijx as in the previous case) fixed costs
resulting, e.g. from the use of a locomotive and an engineer, also occur. If we
denote these costs by Fij , a flow of x > 0 units will result in costs Fij +Wij x.

• If the goal is to find a periodic schedule, the number of carriages used in the
solutions may vary. Thus, in this case it is possible to also put costs on the use
of a carriage. This may be achieved by defining the costs of a flow of x units
in a return arc (vi,ni+1, vi0) (denote the set of return arcs by R) by Kx.

ROUTING OF RAILWAY CARRIAGES 319

Summarizing, the costs fir,js(x) are defined by

fir,js(x) =

Kx if (vir , vjs) ∈ R

Wijx if (vir , vjs) ∈ E1

Fij + Wijx if (vir , vjs) ∈ E2 and x > 0

0 otherwise.

(2.7)

2.2. THE MULTIPLE-CARRIAGE CASE - A MULTI-COMMODITY FLOW MODEL

If the trains are composed of several types of carriages, then for each carriage
type t = 1, . . . , T we have a network flow problem with supply/demands bt

js and
flows xt

iu,js . The flow balance constraints (2.5) of the different types of carriages
are independent of each other. However, the upper bounds (2.6) on the number of
carriages which may be coupled to a train on an existing link or on the number of
carriages which may form an additional link are now common bounds over all types
of carriages. Furthermore, the fixed costs which occur when an additional link is
established have to be considered for all types of carriages simultaneously. Taking
into account these restrictions, we get the following multi-commodity network flow
problem.

min
∑

(vir ,vjs)∈E

T∑
t=0

f t
ir,js(x

t
ir,js) (2.8)

s.t.
∑

ir :(vir ,vjs)∈E

xt
ir,js −

∑
ir :(vjs ,vir)∈E

xt
js,ir = bt

js vjs ∈ V ; t = 1, . . . , T (2.9)

x0
ir,js =

T∑
t=1

xt
ir,js (vir , vjs) ∈ E (2.10)

x0
ir,js � uir,js (vir , vjs) ∈ E (2.11)

xt
ir,js � 0 integer (vir , vjs) ∈ E; t = 1, . . . , T . (2.12)

In this formulation we have introduced dummy variables x0
ir,js , which express the

total number of railway carriages to be transferred from vir to vjs (see (2.10)).
These variables help to present the cost function f t

ir,js in a compact way:

f t
ir,js(x

t
ir,js) =

ct
ir,jsx

t
ir,js if t ∈ {1, . . . , T }

Fij if xt
ir,js > 0, t = 0

and (vir , vjs) is an additional link

0 else,

(2.13)

320 P. BRUCKER ET AL.

where

ct
ir,js =

{
Kt if ir = (i, ni + 1) and js = io

Wt
ij if i �= j.

In this formulation for an additional link (vir , vjs), the value f 0
iu,js(x

0
iv,js) with

x0
iu,js > 0 represents the fixed costs for running a train with empty carriages.

2.3. ADDITIONAL FEATURES

In the following three subsections we will indicate how some further relevant prac-
tical aspects can be dealt with. The first two subsections deal with new situations
or restrictions which have not yet been covered, but which can be incorporated into
the given model without changing its structure. In the last subsection we will deal
with a different representation of solutions which is useful in practice.

2.3.1. Overnight Trains

Until now all additional rail links were scheduled within the intervals [tio, ti,ni+1],
where these intervals typically start at 0:00 and end at 24:00. If we also want to
allow overnight rail links (with a travel time less than one day) to move carriages
from destination stations to departure stations, we have to add arcs (vir , vjs) with
tir > tjs . Such an arc represents a feasible possibility of moving carriages if the
starting time tir plus the minimal traveling time dij between the corresponding
stations is smaller than the time tjs in the next time period, i.e. if tir + dij �
tj,nj+1+tjs . For the cost function (2.13) we have to define the value ct

ir,js by Kt+Wt
ij

for arcs (vir , vjs) with i �= j and tir > tjs .

2.3.2. Turnaround Times at Stations

We assumed that passenger carriages arriving at some time t at a station i can leave
i with any train at departure time tir > t . This assumption is not always realistic. If
the train departs at a remote track the time difference tir − t may be too short. Also
a passenger carriage could depart with a train at time tir , but not with a train at time
tis > tir . To model such a situation we may replace the chain of nodes associated
with a station by a bipartite graph (V1 ∪ V2, A), where V1 represents the arrival
nodes and V2 the departure nodes. Furthermore, we have an arc (v1, v2) ∈ A if and
only if a carriage arriving at v1 can depart at v2.

2.3.3. Routing of Carriages

A solution of the flow models presented in Sections 2.1 and 2.2 only gives limited
information to a railway company. They only obtain information on how many car-
riages they have to use and how many carriages are moved on which rail link. But
they do not get routings for individual carriages, which would be very important

ROUTING OF RAILWAY CARRIAGES 321

information since this will form the basis of planning safety checks, maintenance,
etc. In the case of fixed distributions of carriages at the beginning and end of the
planning period, the company wants to have a path (set of rail links plus transition
arcs) for each carriage (better for groups of carriages) from the station where the
carriage is at the beginning of the period to a station where it will be at the end of
the period. In the case of a periodical schedule (daily, weekly, etc.) the company
will want to have a cycle for each carriage (group of carriages) from the station
where the carriage is at the beginning of the period back to this station. In the latter
case the cycle may contain several periods (e.g. several return arcs (vi,ni+1, vi0)).

To achieve such a collection of paths or cycles, we have to decompose a given
flow solution into path and cycles. However, since not all movements of the car-
riages are represented by flows (the movement of carriages which form the regular
composition of a passenger train rail link is not part of the flow!), we will first
incorporate these movements into the flow solution.

1. For each regular rail link departing with bt
ir carriages of type t at station i at

time tir and arriving at time tjs at station j (i.e. bt
js = −bt

ir), we increment the
flow xt

ir,js in (vir , vjs) by bt
ir units. Furthermore, we eliminate demand bt

ir and
supply bt

js . (These changes have already been mentioned in connection with
the example in Section 2.1.)

2. Decompose the resulting flow solution into flows on paths and in cycles (see
Ahuja et al. [1993], Section 3.5).

Usually such a decomposition is not unique. Thus, we have a certain amount of
freedom to construct the circulations, which can be used to find ‘good’ circulations
of groups of railway carriages. One possible approach is a ‘greedy’ based approach,
where iteratively

• the commodity with the largest remaining flow is chosen,
• for this commodity a cycle where the minimal flow value is maximized is

constructed (this can be realized in O(m log n), where m denotes the number
of arcs and n the number of vertices), and

• in this cycle a circulation with as much as possible flow in all commodities is
added to the decomposition and subtracted from the considered circulation.

3. Local Search Approach

In this section we will present a local search approach to calculate routings for
railway carriages. The method will be based on the multi-commodity flow formu-
lation (2.8)-(2.13) presented in the previous section. Firstly, in Subsection 3.1 we
will define appropriate neighborhoods and, afterwards, in Subsection 3.2 we will
present a two-phase local search method based on simulated annealing. For the sake
of easy notation we will describe the methods based on the following formulation

322 P. BRUCKER ET AL.

of the multi-commodity flow problem with fixed costs:

min
∑

(i,j)∈E

T∑
t=0

f t
ij (x

t
ij) (3.14)

s.t.
∑

i:(i,j)∈E

xt
ij −

∑
i:(j,i)∈E

xt
ji = bt

j j ∈ V ; t = 1, . . . , T (3.15)

x0
ij =

T∑
t=1

xt
ij (i, j) ∈ E (3.16)

x0
ij � uij (i, j) ∈ E (3.17)

xt
ij � 0 and integer (i, j) ∈ E; t = 1, . . . , T (3.18)

with

f t
ij (x

t
ij) =

ct
ij x

t
ij if t ∈ {1, . . . , T }

Fij if xt
ij > 0 and t = 0

0 if xt
ij = 0 and t = 0.

(3.19)

We assume that all data are integers and that the fixed parts of the costs, Fij , are
non-negative. Obviously, the above formulation is a reformulation of (2.8)-(2.13).

3.1. NEIGHBORHOOD STRUCTURES

The integer multi-commodity flow problem with fixed costs (3.14) to (3.19) re-
duces to a classical min-cost flow problem if only one commodity is considered
(i.e. T = 1) and no fixed costs are involved (i.e. Fij = 0). Therefore, for the defin-
ition of appropriate neighborhoods for problem (3.14) to (3.19) we will use ideas
from the network simplex method for min-cost flow problems (for a description
of the network simplex method see, e.g. Chvatal [1983]). The network simplex
method considers spanning tree solutions and moves from a given spanning tree
solution to the next by inserting one nontree arc into the tree and deleting one tree
arc. To adapt these concepts to problem (3.14) to (3.19) we will generalize the
corresponding definitions and techniques.

DEFINITION 3.1. For a solution x = (x1, . . . , xT) of (3.14) to (3.19) an arc
(i, j) ∈ E is called fixed with respect to (w.r.t.) xt if either the flow of commodity
t in the arc (i, j) is 0 or the total flow in the arc (i, j) is equal to the upper bound
of this arc; i.e. if either xt

ij = 0 or x0
ij = uij . Otherwise, the arc (i, j) is called free

w.r.t. xt .
A solution x is called cycle-free if for t = 1, . . . , T the set of free arcs w.r.t. xt

contains no (undirected) circle.

Cycle-free solutions play an important role since, according to the next remark,
problem (3.14) to (3.19) always has an optimal solution which is cycle-free.

ROUTING OF RAILWAY CARRIAGES 323

REMARK 3.2. An arbitrary solution x of problem (3.14) to (3.19) can be trans-
formed into a cycle-free solution x without increasing the objective value.

The remark follows from the fact that after choosing the arcs for which positive
flows may occur (and, thus, selecting the fixed costs), the remaining problem is a
linear integer multi-commodity flow problem. For this problem the proof given e.g.
in Ahuja et al. [1993] for the single commodity of standard flow problem can be
adapted to prove that the free arcs form a spanning forest for each commodity.

Based on the above remark, we will consider only cycle-free solutions for our
local search approach. To define neighborhoods we first have to find a good repres-
entation for such solutions.

Considering a partial solution xi of a cycle-free solution x, we observe that the
free arcs w.r.t. xi form a forest in the graph G = (V ,E). Extending this forest by
some fixed arcs w.r.t. xi we get a spanning tree S(xi) with the property that all arcs
not in S(xi) are fixed w.r.t. xi . On the other hand, if we have a spanning tree of G

and given values xi
l for all nontree arcs l, then values xi

l for all tree arcs l satisfying
(3.15) are uniquely determined. Thus, in the following we will use spanning trees
and fixed values for the nontree arcs to describe solutions.

DEFINITION 3.3. A spanning tree solution of (3.14) to (3.19) is given by a set
S1, . . . , ST of spanning trees of G and by given values xt

l for all nontree arcs l

of St; t = 1, . . . , T . The unique solution x = (x1, . . . , xT) which fulfills all
the constraints (3.15) is called the extension of the spanning tree solution. If this
extension also fulfills constraints (3.16) to (3.18) and if all nontree arcs l of Si

are fixed w.r.t. xt ; t = 1, . . . , T , the solution is called a feasible spanning tree
solution.

Obviously, each spanning tree solution is cycle-free. Furthermore, as indicated
above, for each cycle-free solution x = (x1, . . . , xT) we can find corresponding
spanning trees S1(x1), . . . , ST (xT) such that the resulting spanning tree solution is
given by x. Thus, we can reduce the search space for our local search method to
the set of all feasible spanning tree solutions. It remains to define a neighborhood
structure on this set.

Analogous to the network simplex method, we will define neighbors by insert-
ing and deleting arcs in the spanning trees. Let S = (S1, . . . , ST) be a set of
spanning trees and let x(S) be the corresponding feasible spanning tree solution.
The set of operators which may be applied to S is given by

OP(S) = {insert tkl |t = 1, . . . , T ; (k, l) /∈ St}.
The application of an operator insert tkl ∈ OP(S) to the spanning tree solution
x(S) is defined as follows: The arc (k, l) will be inserted into the spanning tree St

yielding a circle C in St . To determine the arc leaving St , we proceed as follows.
We define the set E1(C) as the set of arcs directed in the same way as (k, l) in C

and E2(C) as the remaining arcs in C. We add a value � to the flow of all arcs in

324 P. BRUCKER ET AL.

E1(C) and substract � from the flow of all arcs in E2(C). If we have x(S)t
kl = 0 we

choose � as the smallest possible positive value such that in the resulting solution
at least one arc of C becomes fixed w.r.t. x(S)t . Otherwise, if x(S)0

kl = ukl we
choose � as the largest possible negative value such that in the resulting solution
at least one arc of C becomes fixed w.r.t. x(S)t . The arc in C which will become
fixed is the arc leaving St (if more than one arc becomes fixed, we may choose
one of these arcs arbitrarily). Obviously, for commodity t the set of free arcs still
forms a tree or a forest. However, it may happen that by the above process the flow
xt

ij in an arc (i, j) of C with x(S)0
ij = uij is reduced (St can contain fixed arcs!)

and thus the arc (i, j) swaps from being fixed to free for the other commodities
k �= t . Therefore, we can not guarantee that the resulting solution is a spanning
tree solution. However, if this happens we may transform this solution into a cycle-
free solution. Since this elimination procedure is rather costly, in practice we will
execute this ‘repair’ only when commodity k is considered next, i.e. not before an
operator on commodity k is applied.

Obviously, the above process transforms a feasible spanning tree solution into
a spanning tree solution which fulfills conditions (3.15) - (3.17) and the non-
negativity constraints. It remains to show that the integral constraints from (3.18)
also remain valid. For the single-commodity case (T = 1) this is obvious, since
for all extensions of spanning tree solutions, where the nontree arcs are fixed, the
integrality constraints are satisfied (note that the nontree arcs can take only values
0 and uij and, therefore, the values resulting from the extension must be integral,
too). Thus, for the single-commodity case we can ignore the integrality constraints.
For the real multi-commodity case (T > 1) the nontree arcs may already take
nonintegral values and, thus, also nonintegral extensions of spanning tree solutions
may exist. Since easy examples can be found where nonintegral solutions to (3.14)
- (3.19) exist which are better than each integral solution, we have to take care of the
integrality constraints. However, if we start our neighborhood search with a feasible
(and thus integral) spanning tree solution, we never lose the integrality since the
calculated � values within a neighborhood step (including the circle elimination)
are always integral.

3.2. TWO-PHASE LOCAL SEARCH METHOD

Based on the neighborhood described in the previous subsection a direct applic-
ation of standard local search methods like simulated annealing or tabu search is
possible. However, due to the large number of possible neighborhood operators
(for each combination of a commodity and a corresponding nontree arc we have
one operator) this approach will not be efficient. We decided to apply a two-level
local search approach. On the first level a choice for one of the commodities is
made. On the second level for the commodity chosen on level 1 a series of steps
with operators defined on this commodity is applied. More precisely, we execute
a fixed number of iterations of a simulated annealing based local search approach.

ROUTING OF RAILWAY CARRIAGES 325

Afterwards, we switch back to level 1, change the choice for the commodity,
and continue the search with this new commodity. This process is repeated until
some stop condition is fulfilled. Summarizing, we execute a series of local search
applications to single commodity problems.

Besides a structural effect, the two-level approach also has a computational
effect. For the time we focus on one commodity, we only have to keep in mind
the data structure belonging to this commodity. The effect of the changes for this
commodity on the other commodities will be calculated by the time these com-
modities will be fixed. Thus, especially the costly elimination of circles with only
free arcs (such circles may occur due to the influence on other commodities) has to
be executed only seldom.

The above sketched two-level approach is the basis for a two-phase local search
method. In the first phase we try to cover a large part of the search space and to
identify a good solution (diversification of the search). Afterwards, in the second
phase, we start with the best solution found in the first phase and try to improve
this solution (intensification of the search). Both phases use the presented two-level
approach. They are applied several times (multiple restarts).

In the following we will describe in more detail how we calculated an initial
solution, how we realized the two phases, and how these elements are combined to
an overall local search approach.

• Initial solution
The structure of the initial solution has an important influence on the behavior
of the local search approach. This follows from the fact that our local search
approach has problems to remove additional links if more than one commodity
is involved in this link. In this case we can only get rid of the additional link
(and, thus, the fixed costs) if the flows for all commodities in this link become
0. However, we do not get a large profit in any of the single-commodity prob-
lems if we only reduce this flow to 0, since the positive flow values for the
other commodities still produce the fixed costs for this arc.
Based on this observation, we calculated the initial solution such that only
very few new additional links were used. To achieve this we allowed the use
of a larger number of railway carriages even if this led to large costs. More
precisely, we assume that we have an arbitrarily large amount of carriages
available at each station and for each train departing at a station we either use
a carriage which arrived earlier at this station or we take one of the carriages
available at this station. Thus, we only need to establish additional links in the
case where different numbers of carriages are available at the beginning and
end of the period at some stations. The creation of these links is done in a
greedy way. This induces that only additional links which are inevitable due
to the given data of the instance are installed (i.e. if in a station the number of
arriving carriages is smaller than the number of departing carriages). Reducing
the number of carriages is much easier for our local search approach, since
reducing the number of carriages is mainly a single-commodity problem.

326 P. BRUCKER ET AL.

• Phase 1
In this phase we randomly select the commodities on level 1 according to their
importance. More precisely, commodity t is fixed with probability B(t)/B,
where B(t) is the total demand of commodity t (sum of all positive bt

j values)
and B is the total demand over all commodities. However, if a commodity
has not been fixed the last 2T times, it will be fixed within the next iteration.
On the second level of the local search approach we apply a special version
of simulated annealing to the single-commodity problem corresponding to the
commodity fixed on level one. This special version consists of a fixed num-
ber of iterations (the used number is given in the next section) with a fixed
cooling parameter (for a description of simulated annealing and its acceptance
mechanism, see van Laarhoven and Aarts [1987] or Dowsland [1993]). The
cooling parameter is experimentally chosen in such a way that it is unlikely to
open a new additional link (i.e. to use an arc (i, j) with x0

ij = 0 and Fij > 0)
without deleting some other additional link. More precisely, the probability
that a decrease of more than min Fij is accepted is below 0.01%.
We have chosen a constant cooling parameter instead of a decreasing cooling
parameter (which is standard) since in the latter case the search would end in
some good local optimum for one commodity. However, practical tests have
shown that this often makes it difficult to get further improvements for the
other commodities (the ‘optimized’ structure for one commodity allows no
room for good changes for the other commodities). For the same reason, we
started the local search for a new commodity with the last solution found for
the previous commodity rather than the best solution.
These two variations may help to ensure that the search does not get stuck in
some small region of the search space, but occupies larger areas of it (diversi-
fication).
Phase 1 is terminated after a fixed number of changes of the commodity on the
first level (the concrete number is given in the next section).

• Phase 2
In this phase we select on level 1 the commodities in a fixed and circular
order which has been prespecified in a random way. The phase stops if we
subsequently have applied local search to all commodities without improving
the current best solution. Concerning the single commodity problems we apply
a fixed number of iterations of simulated annealing with a linear decreasing
cooling parameter. Already the initial value of the cooling parameter is small
to ensure that it is not very likely that a new additional link is opened. The
number of executed iterations depends on the importance of the given com-
modity (it is linear in the total demand B(t) and a detailed description is
given in the next section). Furthermore, the search for the next commodity
starts with the best solution found for the previous commodity. The reason
for these differences to the first phase is that we now intensively want to

ROUTING OF RAILWAY CARRIAGES 327

search for good solutions starting from the best solution found in the first phase
(intensification).

• Overall local search approach
As mentioned before, the basic goal of Phase 1 is to diverse the search and the
basic goal of Phase 2 to intensify the search. These two different objectives are
realized by choosing a constant cooling parameter for Phase 1 and a standard
decreasing cooling scheme for Phase 2.
For the overall approach we apply the two phases several times always using
the same initial solution. Computational experiments have shown that it is
not necessary to calculate different initial solutions for the restarts. This may
result from the randomized character of the basic local search method used
(simulated annealing) and the structure of the initial solution (generous use of
carriages). Therefore, the different restarts seem to have enough potential to
occupy different regions of the search space.

4. Computational Results

In this section we report on some results of a computational study achieved with
the developed local search approach. The aim of the study was to provide some
idea of which type of solutions we were able to generate with our method and
how long it takes to generate them. To achieve this we constructed three scenarios
using an instance which was generated on the basis of the winter term 1996/97
schedule for the regional area ‘Würtemberg (Germany)’. The three scenarios only
differ in the way in which the costs are chosen. One scenario focuses on the goal of
minimizing the number of used carriages, the second on minimizing the costs for
additional links and the third forms a compromise between these two goals (note
that only the ratio between the fixed costs and the linear costs are of importance,
rather than the exact values for the costs). Using the three scenarios, solutions of
different structures can be generated for the given instance.

For the instance in the regional area ‘Würtemberg’ we have 18 relevant stations
(stations where trains arrive or depart), approximately 200 passenger train links,
and 6 different types of railway carriages. The railway stations, possible connec-
tions between them, and the distances are given in Figure 2. Transforming this
instance into an instance of our integer multi-commodity flow problem leads to a
network with 440 vertices and 958 arcs. From these arcs 371 correspond to possible
additional train links. The total demand for the different types of railway carriages
varies from 12 to 361.

Based on this network, we generated three test instances by assigning different
costs to the arcs. More precisely, we varied the ratio between the costs for using
carriages and the costs for additional links. With the first instance I1 we mainly
tried to minimize the number of carriages used by assigning relatively high costs
for the use of a carriage. The second instance I2 focuses on minimizing the costs

328 P. BRUCKER ET AL.

Figure 2. Real world instance

of additional train links by assigning only small costs for the use of carriages. The
last instance will form a compromise such that for two carriage types the costs of
using these carriages are smaller, whereas for the four remaining types the costs
are again high.

The computational tests were executed on a PC 486 DX with 33 MHz and
the presented methods were coded using the programming language C. Before
describing these computational results, we shortly give some details on how the
described components of the local search method were built together. In phase 1 a
new commodity on level 1 is chosen n

ph1
1 times. For each fixed commodity n

ph1
2

iterations of simulated annealing with a constant cooling parameter are executed
on level 2. This results in a total of n

ph1
1 · n

ph1
2 iterations of simulated annealing

in phase 1. In phase 2 we can not prespecify the number of times we change the
commodity on level 1 since we will only stop if the current best solution has not
been improved in T subsequent attempts. The number n

ph2
2 of iterations which are

executed on level 2 for a fixed commodity is given by n
ph2
2 = c1 + c2 · B(t), where

c1 is a constant much larger than n
ph1
2 . Thus, for a fixed commodity the number of

iterations in phase 2 is always much larger than in phase 1.
The structure of the algorithm we used to achieve the test results can be sum-

marized as follows:

ROUTING OF RAILWAY CARRIAGES 329

Table 1. Computational Results

additional links used carriages

km Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

practice 12 495 99 19 11 29 6 4

I1-average 13 606 93 19 11 28 6 4

I1-best 11 526 93 19 11 28 6 4

I2-average 4 151 99 22 12 29 6 4

I2-best 4 134 99 22 12 29 6 4

I3-average 6 225 99 19 11 29 6 4

I3-good 5 155 99 19 11 29 6 4

I3-best 6 207 98 19 11 28 6 4

Algorithm Local Search

FOR i = 1 TO num−restarts DO
BEGIN
phase−1(nph1

1 , n
ph1
2);

phase−2(nph2
2);

END.

In a series of tests we tried to determine good values for the parameters of our
local search approach (details of these tests can be found in Rolfes [1998]). For
phase 1 it appeared to be good to execute around 25,000 iterations per restart.
Reducing this value made the results worse. Increasing this value led to better
results. However, it reduced the chance of obtaining improvements in phase 2.
Putting both phases together, a higher number of iterations in phase 1 did not im-
prove the overall quality significantly, but increased the computational times. The
25,000 iterations in phase 1 were divided over 50 runs for fixed commodities (i.e.
n

ph1
1 = 50) each with 500 iterations (i.e. n

ph1
2 = 500). Reducing the value for n

ph1
1

made the results worse and increasing this value increased the computational times
too much (resulting from the necessary repair work after a change of commodity).
Using this constellation, phase 1 took approximately one minute of computational
time for our test instance.

For phase 2 we determined the number of iterations for a fixed commodity by
2000 plus 5 times the total demand of the fixed commodity (i.e. c1 = 2000 and
c2 = 5). Increasing these values will lead to a slight increase of the quality, but
also to a lengthening of the computational times. The tests indicate that it is better

330 P. BRUCKER ET AL.

to use this time for additional restarts. In combination with the above-mentioned
setting for phase 1 one execution of phase 2 also takes approximately one minute.

Using the mentioned values for the parameters, it arose that we always obtained
good solutions after at most 10 restarts. To indicate the quality of the achieved
results we will compare our solutions with the solution used in practice. The main
characteristics of the practical solution and our solutions are reported in Table 1.
The table contains the following information: For each solution we give the number
of additional links used per day (#) and the total length of these additional links
(km). Furthermore, the number of carriages used of each type is given.

In Table 1 for each instance an average (Ij -average) and the best found solution
(Ij -best) is given. The average solution describes an outcome whose quality was
achieved after 10 restarts by almost all runs of our local search method with the
above-mentioned parameters (due to the random structure of the method we made
several runs with the same parameter constellation). The best solutions correspond
to the best solutions we found during the whole tests. For instance I2 these solutions
were found with the above-mentioned parameter setting in many runs. However,
for instance I1 this solution was only found in a more time-consuming run (with
n

ph1
1 = 500 in the first phase). For I3 the best solution was found more easily than

for I1, but slightly harder than for I2 (i.e. it was found several times and also by
different parameter settings, but not as often as for I2). For instance I3 the solution
I3-good represents an outcome which has often been achieved with the above-
mentioned parameter setting.

The results for instance I1 show that it is possible to reduce the number of
carriages used for the practice solution by 7 using a similar number of additional
links and without increasing the distance for additional links considerably (only 31
km in the best solution). On the other hand, instance I2 gives us solutions where
we can reduce the number of additional links from 12 to 4 and the distance of these
links from 495 km to approximately 150 km. To realize these solutions we have to
use 4 more carriages than for the practice solution. Finally, for instance I3 we get
solutions which dominate the solution from practice in all aspects. Using the same
amount of carriages, we can reduce the number of additional links from 12 to 5 and
the distances of these links from 495 km to 155 km (solution I3-good) or using 2
carriages fewer we can reduce the number of additional links from 12 to 6 and the
distances of these links from 495 km to 207 km (solution I3-best).

Summarizing, we can state that our local search approach gave excellent results
for the considered real world instance within 20 minutes on a slow PC. Using the
restarts, the method is very stable since the quality of the results achieved after at
most 10 restarts is always very similar. The calculated solutions will reduce the
costs for operating a given timetable considerably.

ROUTING OF RAILWAY CARRIAGES 331

5. Conclusions

In connection with a case study we have formulated the problem of routing rail-
way carriages for a given timetable as an integer multi-commodity flow problem
with linear fixed-cost objective functions and solved this problem by a simulated
annealing procedure. The objective of the study was to explore the possibility
of automatically generating routings for railway carriages for the new timetables
which are introduced in the German railway system each half year. Test results for
short-distance connections in a subnetwork of the German railway network have
shown that the method is very promising. Based on the relative long computational
times application of the presented method will be limited to the long term planning.
For dealing with short term events like break downs, delays, etc. (on-line situation)
faster solution methods have to be developed. However, the presented modeling as
an integer multi-commodity flow problem with linear fixed-cost objective functions
may be helpful in designing such methods. Besides calculating good routings the
presented method also can be used to calculate the influence of investment into
additional carriages. However, such long-term investment planning was not the
topic of the paper.

The method can also be used to solve the single-commodity network flow prob-
lem with linear fixed-cost objective functions, which is known to be NP -hard.
Thus, it would be an alternative to a branch-and-bound algorithm developed by
Arlt [1994] for this special problem. The general method can also be used to
solve network design problems. Another approach to solve the problem is to apply
mathematical programming methods to solve the integer multi-commodity network
flow problem. For a multi-commodity flow problem with binary variables and lin-
ear objective function Barnhart et al. [1996] have developed a method based on
branch-and-bound and column generation. They provide approximative solutions
for problems with up to 50 nodes and 130 arcs, but a large number of commod-
ities. It remains to determine how these methods, if extended to the more general
situation, are able to compete with the simulated annealing approach.

Acknowledgments

The authors are grateful to the anonymous referees for their helpful comments on
an earlier draft of the paper.

References

Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993), Network flows; theory, algorithms, and
applications, Prentice Hall, New Jersey.

Arlt, Ch. (1994), Die Lösung großer Fixkosten-Netzwerkflußprobleme, Gabler Verlag, Wiesbaden.
Barnhart, C., Hane, C.A. and Vance, P.H. (1996) Integer multicommodity flow problems, Working

paper, Massachusetts Institute of Technology, Center for Transportation Studies.

332 P. BRUCKER ET AL.

Chvatal, V. Linear Programming, W.H. Freeman and Company, New York/San Francisco.
Crainic, T.G. (2000), Service network design in freight transportation, European Journal of Opera-

tional Research 122, 272–288.
Crainic, T.G. and Gendreau, M. (2000), A simplex-based tabu search method for capacitated network

design, INFORMS Journal of Computing 12(3), 223–236.
Dowsland, K.A. (1993) Simulated annealing, in: Modern Heuristic Techniques for Combinatorial

Problems, edited by C. Reeves, Blackwell Scientific Publications, London, 20–69.
Garcia, B.L., Mahei, P. and LeBlanc, L.J. (1998) Iterative improvement methods for a multiperiod

network design problem, European Journal of Operational Research 110, 150–165.
van Laarhoven, P.J.M. and Aarts, E.H.L. (1987), Simulated annealing: theory and applications, D.

Reidel Publishing Company, Dordrecht, Holland.
Marin, A. and Sameròn, J. (1996), Tactical design of rail freight networks. Part I: exact and heuristic

methods, European Journal of Operational Research 90, 26–44.
Radtke, A. (1995), Dispositionsmodell für den optimierten Betriebsmitteleinsatz der Eisenbahn, Wis-

senschaftliche Arbeiten Nr. 43, Fachbereich Bauingenieur- und Vermessungswesen; Institut für
Verkehrswesen, Eisenbahnbau und Betrieb, Universität Hannover.

Rolfes, T. (1998), Ein lokales Suchverfahren für die Fahrzeugeinsatzplanung im Schienenpersonen-
verkehr, Diplomarbeit, Fachbereich Mathematik/Informatik, Universität Osnabrück.

Schrijver, A. (1993), Minimum circulation of railway stock, CWI Quarterly 6(3), 205–217.

